Solubility of D-(*p*-Hydroxy)phenylglycine in Water + 2-Propanol from (293 to 343) K

Zhimao Zhou, Yixin Qu,* Honghong Wei, and Liyuan Chen

College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China

The solubility of D-(*p*-hydroxy)phenylglycine in binary 2-propanol + water was measured using a synthetic method with a laser-assisted observation of a solute dissolution in the temperature range from (293 to 343) K and mole fraction (x_2^0) range of 0.0000 to 0.5451. The results were correlated with a semiempirical equation.

Introduction

D-(p-Hydroxy)phenylglycine (CAS registry no. 22818-40-2) is a white or almost white crystalline powder and a useful chemical for preparation of semisynthetic penicillins and cephalosporins. To determine the proper solvent and to design an optimized crystallization process, it is necessary to know its solubility in different solvents. From a review of the literature on D-(p-hydroxy)phenylglycine, it was found that some experimental solubility data in water + 1-butanol at 298.15 K were available.¹ The solubility in water, methanol, ethanol, carbon tetrachloride, toluene, and N,N-dimethylformamide between (278 and 323 K) is available.² In this article, the solubility of D-(p-hydroxy) phenylglycine in water + 2-propanol from (293) to 343) K was determined using a synthetic method with a laserassisted observation of a solute dissolution at atmospheric pressure. The method employed in this work was classified as a synthetic method, which was much faster and more reliable than the analytical method.³ For the solubility of D-(*p*-hydroxy)phenylglycine in water at 318.17 K, there is a 2.5 % difference between data in this article and those in reference 2, which shows that the measurement method is more reliable.

Experimental Section

Materials. A white crystalline powder of D-(*p*-hydroxy)phenylglycine, purchased from Shijiazhuang Pharmaceutical Group (CSPC) was prepared by recrystallization from solution of water three times. Its mass fraction purity determined by HPLC was greater than 0.994. 2-Propanol was an analytical research grade reagent from Beijing Chemical Reagent.

Apparatus and Procedures. The solubility of D-(*p*-hydroxy)phenylglycine was measured using an apparatus that is similar to that described in literature^{2,4-9} and is described briefly here. A 500 mL jacked vessel was used to determine the solubility; the temperature was controlled to be constant (fluctuates within 0.05 K) by a thermostat water bath. The dissolution of the solute was examined by the laser beam penetrating the vessel. To prevent evaporation of the solvent, a condenser vessel was introduced. The mass of the samples and solvents was determined using an analytical balance (Sartorius CP224S, Germany) with an uncertainty of \pm 0.0001 g. During the experiments, predetermined excess amounts of solvent and D-(*p*-hydroxy)phenylglycine of a known mass were placed in the inner chamber of the vessel. The contents of the vessel were stirred continuously at a constant temperature. In the early stage of the experiment, the laser beam was blocked by the undissolved particles of D-(p-hydroxy)phenylglycine in the solution, so the intensity of laser beam penetrating the vessel was lower. As the dissolution of the particles of solute occurred, the intensity of the laser beam gradually increased. When the solute dissolved completely, the solution was clear and the laser intensity reached a maximum. Then, additional solute of a defined mass (about (0.1 to 5) mg) was introduced to the vessel. This procedure was repeated until the penetrated laser intensity could not return to a maximum; in other words, the last addition of solute could not dissolve completely. The interval of addition was 90 min. The total amount of solute consumed was recorded. The same solubility experiment was conducted three times, and the mean values were used to calculate the mole fraction solubility (x_1) on the basis of eq 1. The composition of solvent mixture (x_2^{o}) is defined as eq 2

$$x_1 = \frac{m_1/M_1}{m_1/M_1 + m_2/M_2 + m_3/M_3} \tag{1}$$

1. .

$$x_2^{\rm o} = \frac{m_2/M_2}{m_2/M_2 + m_3/M_3} \tag{2}$$

where m_1 , m_2 , and m_3 represent the mass of the solute, 2-propanol and water, respectively, and M_1 , M_2 , and M_3 represent the molecular weight of the solute, 2-propanol, and water, respectively.

Results and Discussion

The solubility of D-(p-hydroxy)phenylglycine in the mixture of water and isopropanol at different temperatures is shown in Table 1. The relationship between temperature and solubility of the D-(p-hydroxy)phenylglycine is correlated with a semiempirical equation⁹

$$\ln x_1 = a + \frac{b}{T/K} + c \ln(T/K)$$
(3)

where T is the absolute temperature and a, b, and c are empirical constants. The difference between experimental and calculated results is also presented in Table 1. The values of the three parameters a, b, and c together with the root-mean-square

^{*} Corresponding author. E-mail: quyx2008@yahoo.com.cn.

Table 1. Mole Fraction Solubility of D-(p-Hydroxy)phenylglycine (1) in the Mixture of 2-Propanol (2) and Water (3) in the Temperature Range of (293 to 343) K

T/K	$10^{3}(x_{1})$	$10^3(x_1 - x_1^{\text{calcd}})$	T/K	$10^{3}(x_{1})$	$10^3(x_1 - x_1^{\text{calcd}})$				
		$x_2^{o} = 0$	0.0000						
293.25	1.960	-0.002	323.15	2.982	0.024				
298.13	2.101	0.007	328.11	3.187	0.014				
303 15	2 237	-0.003	333.15	3 4 3 9	0.028				
308.18	2 407	0.007	338.16	3 663	-0.0020				
313 15	2.407	-0.022	3/3 15	3.005	-0.030				
318 17	2.340	-0.030	545.15	5.910	0.050				
510.17 2.710 -0.039									
$x_2^{\rm o} = 0.0322$									
293.25	1.631	0.005	323.15	2.592	-0.005				
298.12	1.753	0.002	328.13	2.831	0.015				
303.15	1.899	0.008	333.15	3.076	0.018				
308.11	2.043	0.000	338.16	3.330	0.009				
313.05	2.216	0.007	343.05	3.601	-0.001				
318.19	2.402	0.004							
0 00007									
202.10	1 2 4 2	$x_2 - 0$	222.12	2.246	0.026				
293.19	1.343	-0.009	323.12	2.246	-0.036				
298.17	1.457	-0.016	328.13	2.493	-0.001				
303.15	1.652	0.046	333.07	2.724	0.002				
308.14	1.731	-0.022	338.18	2.982	0.001				
313.11	1.929	0.017	343.15	3.259	0.003				
318.19	2.079	-0.012							
		$x_2^{\rm o} = 0$	0.1138						
293.25	1.090	0.015	323.25	2.004	0.004				
298.13	1 187	-0.015	328.16	2 192	0.007				
303.15	1 330	-0.002	333.07	2.172	0.036				
308.16	1 490	0.000	338.16	2 590	-0.003				
313 11	1.470	-0.013	3/3 1/	2.590	-0.025				
318 12	1.054	0.008	545.14	2.700	0.025				
516.12	1.024	0.008							
		$x_{2}^{0} = 0$	0.1665						
293.18	0.862	-0.012	322.85	1.645	-0.007				
298.17	0.991	0.005	328.17	1.819	0.001				
303.12	1.125	0.020	332.75	1.928	-0.040				
308.13	1.236	0.003	338.12	2.152	0.003				
312.98	1.361	-0.003	342.85	2.345	0.030				
318.18	1.514	0.002							
		$r^{0} = 0$	0 2305						
203 25	0.667	-0.000	323 15	1 250	-0.026				
293.23	0.007	0.009	229.15	1.239	0.020				
202 15	0.702	0.005	222 15	1.421	-0.010				
200.15	0.050	0.010	220 16	1.541	-0.010				
212 15	1.047	0.000	242 15	1.099	0.002				
210.12	1.04/	-0.004	545.15	1.805	0.012				
318.12	1.1/1	0.008							
		$x_{2}^{o} = 0$	0.3100						
293.24	0.506	0.000	323.15	0.940	-0.003				
298.17	0.562	-0.003	328.18	1.029	-0.005				
303.15	0.640	0.009	333.13	1.152	0.022				
308.13	0.695	-0.006	338.13	1.238	0.006				
313.25	0.774	-0.004	343.15	1.325	-0.015				
318.17	0.854	-0.003							
		r ⁰ —	0.4114						
202.25	0.240	$x_2 = 0$	202.14	0.570	0.010				
295.25	0.340	-0.002	229.14	0.570	-0.010				
298.12	0.575	0.002	222.15	0.045	0.011				
200.17	0.410	0.008	220.10	0.099	0.008				
308.10	0.442	-0.004	338.10	0.760	0.006				
313.15	0.488	0.001	343.16	0.812	-0.009				
318.12	0.525	-0.006							
$x_2^{\rm o} = 0.5451$									
293.25	0.194	0.000	323.14	0.323	0.000				
298.17	0.213	0.000	328.12	0.346	-0.001				
303.14	0.234	0.000	333.15	0.371	0.000				
308.16	0.255	0.000	338.11	0.396	0.000				
313.15	0.277	0.000	343.12	0.421	0.000				
318.16	0.300	0.000							

Table 2. Parameters of Equation 3 for D-(p-Hydroxy)phenylglycine (1) in Binary 2-Propanol (2) + Water (3) Solvent Mixtures in the Temperature Range of (293 to 343) K

x_2^{o}	а	b	С	10^4 (rmsd)
0.0000	-78.976	2228.1	11.467	0.21
0.0322	-91.609	2642.4	13.409	0.09
0.0697	-84.012	2139.9	12.341	0.22
0.1138	16.333	-2714.1	-2.4490	0.16
0.1665	43.122	-4005.1	-6.4257	0.18
0.2305	2.9027	-2185.9	-0.4838	0.11
0.3100	5.1329	-2248.2	-0.8900	0.10
0.4114	-68.656	1360.3	9.8639	0.07
0.5451	36.097	-3405.0	-5.8146	0.00

deviations (rmsd) are listed in Table 2. The rmsd is defined as follows

$$\operatorname{rmsd} = \left[\frac{\sum_{j=1}^{N} (x_{1,j} - x_{1,j}^{\operatorname{calcd}})^2}{N-1}\right]^{1/2}$$
(4)

where N is the number of experimental points, $x_{1,j}^{calcd}$ is the solubility calculated from eq 3, and $x_{1,j}$ is the experimental value of solubility.

From Table 1 and Table 2, we can draw the following conclusions: (1) The solubilities of D-(p-hydroxy)phenylglycine in mixture of water and 2-propanol increase with the increase in temperature. (2) The solubilities of D-(p-hydroxy)phenylglycine decrease with the increase in 2-propanol in the mixture. (3) All of the experimental data can be regressed by eq 3 for each solvent mixture. The experimental solubility and correlation equation in this work can be used for modeling the solubility of D-(p-hydroxy)phenylglycine in a production process.

Literature Cited

- (1) Rudolph, E. S. J.; Zomerdijk, M.; Ottens, M.; van der Wielen, L. A. M. Solubilities and Partition Coefficients of Semi-Synthetic Antibiotics in Water + 1-Butanol Systems. Ind. Eng. Chem. Res. 2001, 40, 398-406.
- (2) Wang, S.; Li, Q. S.; Li, Y. L. Solubility of D-p-Hydroxyphenylglycine in Water, Methanol, Ethanol, Carbon Tetrachloride, Toluene, and N,N-Dimethylformamide between (278 and 323) K. J. Chem. Eng. Data 2006, 51, 2201-2202.
- (3) The Experimental Determination of Solubilities; Hefter, G. T., Tomkins,
- (a) R. P. T., Eds.; John Wiley: New York, 2003; p 260.
 (4) Ren, G. B.; Wang, J. K.; Yin, Q. X.; Zhang, M. J. Solubilities of Proxetine Hydrochloride Hemihydrate between (286 and 363) K. J. Chem. Eng. Data 2004, 49, 1671-1674.
- (5) Wang, S.; Wang, J. K.; Yin, Q. X. Measurement and Correlation of Solubility of 7-Aminocephalosporanic Acid in Aqueous Acetone Mixtures. Ind. Eng. Chem. Res. 2005, 44, 3783-3787.
- (6) Hao, H. X.; Wang, J. K.; Wang, Y. L. Solubility of Dexamethasone Sodium Phosphate in Different Solvents. J. Chem. Eng. Data 2004, 49, 1697-1698.
- (7) Li, D. Q.; Liu, D. Z.; Wang, F. A. Solubility of 4-Methylbenzoic Acid between (288 and 370) K. J. Chem. Eng. Data 2001, 46, 234-236.
- Wang, S.; Wang, J. K.; Yin, Q. X.; Wang, Y. L. Light Extinction (8)Method for Solubility Measurement. Chin. Opt. Lett. 2005, 3, 149-151.
- (9) Liu, B. S.; Gong, J. B.; Wang, J.; K; Jia, C. Y. Solubility of Potassium Clavulanate in Ethanol, 1-Propanol, 1-Butanol, 2-Propanol, And 2-Methyl-1-Propanol between (273 and 305) K. J. Chem. Eng. Data 2005, 50, 1684-1686.

Received for review August 4, 2008. Accepted October 2, 2008. We are indebted to the National Basic Research Program of China (973 Program) (Grant No. 2007CB714304) for financial support of this work.

JE800611R